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Dumbbell models are only crude representations of actual polymer molecules, 
but their simplicity allows for explicit calculations which in many instances have 
shed light on the connection between molecular properties and rheological 
behavior. On the other hand, hydrodynamic interactions are known to strongly 
influence the dynamic response of polymer solutions and this makes the 
representation of the hydrodynamic drag an important aspect in the calcula- 
tions. In the present work, the effects of the state of flow are incorporated 
explicitly in the frictional properties of the FENE model of a dilute polymer 
solution. Results for the steady elongational viscosity and the mean square 
end-to-end distance are presented. 

KEY WORDS: Dilute polymer solutions; dumbbell model; hydrodynamic 
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1. I N T R O D U C T I O N  

It is rather well known that hydrodynamic interactions between macro- 
molecules in dilute polymer solutions influence the dynamic behavior of 
these systems. The study of such interactions has a long history in the 
theory of polymer dynamics and recently has experienced a revival mostly 
due to the work of Ottinger/~'21 And although the importance of the inclu- 
sion of hydrodynamic interactions in improving the predicted rheological 
properties arising from kinetic theoretical models has been clearly estab- 
lished, there still exist many open questions regarding the nature of the 
approximations involved in the treatment of this problem. One of the sim- 
plifications of the usual kinetic theory of bead-rod-spring mi3dels of dilute 
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polymer solutions is the notion that the average hydrodynamic drag force 
on a head F~ may be approximated by a generalized Stokes law of the form 

v, = - Z  (,j. t v , - B .  R,) (ll  
i 

where Vi is the velocity of the ith bead, R i is the position vector of the ith 
bead, B is a traceless tensor independent of position, and the friction ten- 
sors (ij are independent of the velocity field present in the solvent. An 
attempt to include explicitly the effects of the flow field in the frictional 
properties of a polymer solution has been carried out through the use of 
the consistent averaging method and the Gaussian approximation. A 
different approach, which deals with the hydrodynamic problem of a 
multibead-rod-spring chain immersed in a Newtonian solvent in steady 
elongationa[ flow first and then incorporates the results into the poly- 
mer dynamics, has given elongation-rate-dependent expressions on the 
mobilities and friction tensorsJ 31 

In this paper we use these expressions, specialized to FENE 
dumbbells, to numerically compute approximate value~ for the steady 
elongational viscosity and the mean-square end-to-end distance a~ 
functions of the elongation rate. 

The paper is organized as follows. In the next section we state the 
assumptions inherent in our model of the polymer solution and provide the 
precise forms of the steady diffusion equation and the Kramers kinetic 
theory expression for the stress tensor. In order to make the paper self-con- 
tained, Section 3 gives the relevant results of the mobilities obtained 
through the method of induced forces for the case of dumbbells, In 
Section 4, we introduce these expressions into the diffusion equation to 
derive a system of algebraic equations for the components of the tensor 
(RR) ,  where R is the relative coordinate for the dumbbell and the brackets 
denote a nonequilibrium average. This in turn allows us to compute the 
mean-square end-to-end distance and the elongational viscosity. We close 
the paper in Section 5 with a discussion of the results and some concluding 
remarks. 

2. DIFFUSION MODEL FOR THE POLYMER SOLUTION 

The model we adopt for the polymer solution comprises the following 
assumptions: 

(i) There is a dilute suspension of flexible dumbbells (i.e., two identi- 
cal spherical beads of radius a joined by an elastic massless connector) in 
a Newtonian solvent of viscosity r/s. 
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(ii) 
where fl is given by 

There is a homogeneous stationary 

0 - 1  

P = 2  0 0 

velocity field V ~  .R, 

(2) 

and g is the constant elongation rate present in the solvent in the absence 
of the dumbbells. 

(iii) Beads represent frictional centers of resistance to the flow and 
move with a mean drift velocity determined by balance among systematic 
drag forces, potential forces, and the "entropic force" which derives from 
random molecular encounters (diffusion limit which suppresses explicit 
consideration of inertial forces). 

(iv) From Eq. (1), the frictional forces F'7 are related to the velocities / 

of the beads Vi = Ri by 

2 

vi = # . a i -  Y~ U,," F" (3) / 
i =  1 

where/lz/are the mobility tensors. It is in these tensors (to be given below) 
where the main difference with other approaches lies. 

(v) The smoothed-out expression for the entropic (Brownian) force 
acting on bead i is 

In ~ ( i= 1, 2) (4) F, ~= -KaTCSc~Ri 

where K, is Boltzmann's constant, T the absolute temperature, and ~P' 
represents the number of dumbbells that will be found within the con- 
figuration range dR, dR2 around R~ and R2. 

(vi) 'P is independent of the location of the center of mass, so that 
W=n~Us(R ), where R = R 2 - R I  is the relative coordinate and n is the 
(constant) number density of dumbbells. 

(vii) If RCq is the equilibrium length of the dumbbell, a/R~q < 1/2, to 
avoid interpenetration of the beads. 

(viii) Potential forces are denoted by F'  and for the FENE ~4) 
dumbbell re~d 

HI(R1 -R2)  
F~= 1 -fR~ - R212/Ro ~ (5~ 

822/62/5-6-24 
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Under the above assumptions, the stationary distribution function 
obeys the diffusion equation 

~---~. (,8. R ~ , ) =  ~-~. D �9 ~- -~  + ~B T ~u, (6) 

where D = 2K~ T(]dli --/212 ) is the diffusion tensor. 
Further, since we are interested in rheological properties of the 

polymer solution, we need the kinetic theory expression for the stress 
tensor. Due to the fact that we  are considering elastic connectors, it is 
convenient to use the Kramers form, namely 

z = 2rLfl - q(RF" ) + nK, TI (7) 

the brackets denote a stationary nonequilibrium average performed with 
~/',.(R) (that is, the solution to the diffusion equation), i.e., 

=fdR RF"~,.(R) (8) (RF")  

and I is the unit tensor 

3. THE METHOD OF INDUCED FORCES AND THE MOBILITY 
TENSORS 

We now look at the hydrodynamic problem of a dilute suspensions of 
FENE dumbbells, assuming that the nature of the connector is such that 
it does not have any effect on the motion of the solvent. This is in the spirit 
of the Kirkwood-Riseman approach which takes the Oseen solution to the 
creeping flow equations. 

The motion of the incompressible Newtonian solvent is assumed to 
obey the quasistatic Navier-Stokes equations: 

cw(a, t) 0 
pV(R, t)" c3R gR P(R,t) (9) 

and 

for 

~--R. V(R, t )=O (i0) 

IR  - R i l  > a 

P is the pressure tensor, 

lOVe ~Vk\ 
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p is the hydrostatic pressure, p the mass density of the solvent, and g~, R/~ 
denote the components of the solvent velocity V and the position vector R. 

Each bead has a (translational) velocity V~=dR]dt, and obeys the 
equation of motion 

I n - - - -  
dYe(t) 

dt 
,11 ext f - F ~ ( t ) + F ~  ( / ) = -  

& ( t )  

P(r ,  l) .  ~,  dS+  FT~'(t) (11) 

S i is the surface of bead i at time t and Ni is a unit vector normal to it 
pointing in the outward direction. 

As boundary conditions we take V(R, t) = V~(t) for [R - R~(t)f = a. As 
was mentioned, in the absence of the dumbbell the solvent is assumed 
in steady elongational flow, V~ and the pressure is po= 
-�89 

The goal is to relate F~ ~ to V i and this is most conveniently achieved 
by introducing induced forces. We first set 6V = V - V o due to the presence 
of the dumbbells, substitute this in Eqs. (9) and (10), linearize the resulting 
equations in the perturbation 6V, and introduce force densities induced on 
the spherical beads of the dumbbells such that the fluid equations are 
extended to the space within the spheres. Hence, if we dcnote the modified 
pressure as p* = p - p.,  the solvent equations may be cast in the form 

V . V = 0  (12) 

2 
~ "  V - ~ V 2 V  = - V D  :~ - ] ) R  "~*VV--~-- ~ Eli nd (13) 

j= l  

where, in order to ensure that the induced forces are surface forces only, 
they have been defined such that 

V(R,t)=V,(t) for I R -  Ri(t)[ ~<a (14) 

p * = - p R . f l . V ~  for J R -  R,(t)] < a  (15) 

F~ff(R, 0--- 0 for I R -  R,(t)l > a (16) 

Further, from Eqs. (11)(16) and using Gauss' theorem, we find 

Vf/ . . . .  fs' I,, P(R, t)" N, dS 
�9 t 

: --fIR R~(I)t <~a 

--;tR R,(t)f ~< a 

4 
V" P dR =3 rtpa31~" (V i -  fl" Ri) 

ind F, (R, t) dR 
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providing the necessary connection between the induced forces and the 
drag forces. The formal solution to Eqs.(12) and (t3) allows us to 
eliminate the induced forces eventually and express Fff in terms of V~. 

In the point force approximation and to lowest order in the inverse 
penetration length ~,  it has been shown ~3) that 

where 

2 

K =  - u . "  V;' t17t 
i = 1  

- % a  d, d.,. ~'I8 p,=(6nrla)  j 1 --~oqa--(6 , 

p , = ( 6 n q a )  t(2i, l+y0/~0/~0), i r  (~9) 

3 _')2 

t ' = l  

3 § (k~- G) 2 ~:.- ~ a  ~ a -  

R~j=Ro/R~i , e,o==_a/Rjj , at=(pfl,,/rl.~)'/2; fl,. are the eigenvalues of fl and 
{G, d,, e3} are orthonormal vectors. 

4. ELONGATIONAL V ISCOSITY A N D  M E A N - S Q U A R E  
E N D - T O - E N D  DISTANCE 

Now, we introduce the following dimensionless quantities: 

R' t' Co(R0) 2 r' 
R = ~ a  a, t=2-- ~ ,  2 n - 1 2 N K B T ,  g=2J'Hg', Z = 3 K B T n N  

where N is the number of subunits making up the macromolecule; each 
subunit has length a'. The number N is thus proportional to the molecular 
weight and Ro= Na' is the total length of the extended macromotecule. 
~o=6nGa is the Stokes drag on a sphere of radius a. Equations (6) and 
(7) are then written in the following form (after dropping the prime 
notation and within a hydrostatic contribution): 

0=~-~. f(RR) . - ~ +  [ H f ( R R ) - R - p ' R ]  ~u (22) 

T= (H(R)  RR) (23) 

where H =  1/(1 - R 2) and f(RR) = (~o/2KBT) D. 
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The dimensionless elongational viscosity is defined as 

~zz -- "~xx q = (24) 

whereas the dimensionless mean-square end-to-end distance is given by 
(R 2 >. Note that the calculation of these two quantities involves the com- 
ponents of (RR>. Multiplying Eq. (22) by RR, averaging the resulting 
equation in R space, and using the approximations 

( R~R~R~R~> = ( R~R~>( R;,R~> 
2 2 2 2 ( R~RI~R~R,~) = ( R~,>( RI~>( R.~R6> 

we arrive at the following system of nonlinear coupled algebraic equations 
for the components of <RR >. 

For ~<0 
-XIX4(  ( R 4) "+- ( R~,R.v.~> + ( R~:R:x> ) 

9~a X _~.)(R2 ~ 2 (X 3 9c~,a'] + (x2+5- d- , --i-0-]=0 
-- X, X4{<R4> q- <R,,,.R,..,,) + (R,,:R_,,)) 

--- ~/i X4(<]r ~- <R:~R,:> + <R:,.R,.:>) 
1( 7 

+ (X2+2,~)(R2>+~ 2X3+~,a(R2>)=O 

[ 9~,a ] 
X 2 - k - - - ~ X , - X ,  X4((R~>+ ( R . ~ ) ) - , :  (Rr,,)  - X, X4(R,:R.,.>=O 

[ 9~,a ] 
X 2 " t - ' - i ' ~ X  1 --XI.~"4(KR2v>-{ - < R 2 > ) - , i  <R.v.~>-X, X4KRv:R:~>=O 

X2+~-X , -X~X4( (R~>+ <R~>)+ (Rrz ) -X ,  X4<R~vRy~)=O 

Xa+INN<R2 > X~X4((R2>+(R2,.>)+ ( R z , > - X ,  X4<RzrRw:>=O 

X2+-~-X,- X, X4((R.;>+<R~>)+~ (Rv:>-X~X4<R,,~R,:)=O 

X2q i5N(R2) X'Xn(<R~)+(R.~ '>)+ <R:v)-X, Xn(R:~Rzv>=O 
(25) 
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where 

X, =2(H> 

2 X a l I)  

I 3 ( ( R : ( ~ ) ) J } )  7 I <R~> I+ 1 -x~x~ 

3 

3 { 1 [14 7 (  (R: ) ' ] ]~  
X 4= - - ~ a  - - + ~ l  -~ ( R 2 > j j j  ( R 2 )  1/2 -i-5-- 1 

<R-'> = <R'~,> + <R~,> + <R~> 

(26) 

(27)  

A simihtr result holds for ~ >~ 0. 
We have solved these systems numerically and the results for r/j~/r/,, 

(i/0 being the zero shear-rate viscosity) and (R 2 >/(R~) as functions of 2,~! 
are shown in Figs. I 4 for a given value of the kinematic viscosity and 
various values of the sphere diameter. 

"/•E -% 
6 0 0 0  

40001 

2 0 0 0  

. . . . . .  6' ' -  'o-  - I 0 0  ~80 - 0 - 4 0  -2  

f 

2'0 
2k.4 I 

4 0  60 80 ~o0 I 

Fig. 1. Normalized extensional viscosity vs. dimensionless elongation rate for uniaxiat and 
biaxial extensional flows. N = 1000. 
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Fig. 2. 

Fig, 3. 
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z ~ . . 4  g.g- , ID I 1. 2 1.4 
Plot of N ( R  2 ) / ( R ~ )  vs. dimensionless elongation rate for uniaxial extensional flow. 
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extensional viscosity vs. dimensionless elongation rate. 
viscosity of the solvent v = 0.01. Here ~ > 0. 

Kinematic 
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~00 ~ 0  t N = lC, O0 
~7= 001 t 8 0  

6 0  

. . . . . . . . . . . . .  ~ . H  :~ 
-14  ~12 LO -o~ - o 6  - o 4  ~oz o o  

Fig. 4. Same as in Fig. 3, for ?,< 0. 

5. D I S C U S S I O N  

For a = 0  (no hydrodynamic interaction), we have verified that our 
numerical computations comply with the limits t41 

lim rie = 3qo, rio = ri,~ + nKB T2 , 
~ 0  

lim riE = 3t/, + 2nKn TZub, b = 3N 

lim rie= 3ri.~ + �89 T2Hb 

(28) 

(29) 

(30) 

This is depicted in Fig. I, thus giving support to our numerica~ 
algorithm. 

In Fig. 2 we show results for the moments at low elongation rates, in 
uniaxial extension and a = 0 .  The growth of <R 2 > is mainly due to <R 2 > 
in the vicinity of 2 2 n i =  1. In contrast, in biaxial extensional flow (not 
shown), ( R ] >  and <R 2) are the mayor contributions to molecular exten- 
sion, whereas the <R 2 ) contribution is negligible for -2H~ = 1. By varying 
the sphere radius a, we found an increase in the values of the moments of 
about 5% for a -0 .1Req ,  where R e q = ( N +  1) -w2, around the vicinity of 
~,n~ = 0.5. This is not shown in Fig. 2 due to the scale used in plotting the 
results. However, a substantial increase was found for values within the 
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range O. lReq<=a<O.5Req, and this is due to hydrodynamic interactions 
when the spheres come closer to each other. 

The influence of sphere radius on elongational viscosity, for small lil, 
is shown in Figs. 3 and 4. Radii used as parameters correspond to a = 0, 
a=0.01Req , and a=0.1Req. This is consistent with the fact that we have 
only considered the lowest order in the i dependence of the mobilities, and 
is reflected in the range covered in Figs. 3 and 4. 

A striking result arises by comparing the behavior of the elongational 
viscosities for positive and negative values of i. In uniaxial flow r/E is 
always an increasing function of ~, whereas in biaxial flow there exists a 
region where qL" does the opposite (see Figs. 3 and 4). Indeed, in Fig. 4 our 
results show a region of strain thinning at low elongation rates that follows 
a small maximum when -~  ~ 0. The presence of this maximum and the 
inflection points shown in these figures reflect the mathematical complexity 
of the system of equations (25)-(27). Indeed, the order of the moment 
equations and their couplings produce a highly nonlinear system which 
induces this particular behavior not found in previous work. (5 7) 

Another important result is that our computations did not show 
evidence for the presence of a hysteresis loop at low elongation rates in 
accordance with the predictions of Wiest et al. ~5) 

Comparison of our numerical values with those from ref. 6 shows that 
in the limit of low elongation rates the elongational viscosity shows a 
sizeable dependence on the sphere radius for both approaches. However, 
departures up to 20% in the numerical values are observed, which show 
the differences between Ottinger's method and the induced-forces approach 
presented here. 

Finally, we should mention that, in principle, the approach recently 
proposed by Rabin et al. ~ to deal with the calculation of the full dynamic 
()seen tensor in simple shear and elongational flows could also be used to 
examine the rheological behavior of polymer solutions. However, apart 
from the fact that their expressions for the mobilities look far more com- 
plicated than ours, it is not clear how their method could be extended 
beyond the pointlike sources of frictional force approximation, in contrast 
with the systematic treatment allowed by the method of induced forces 
used here. 
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